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Abstract

Learning Markov decision processes (MDPs)
in the presence of the adversary is a chal-
lenging problem in reinforcement learning
(RL). In this paper, we study RL in episodic
MDPs with adversarial reward and full infor-
mation feedback, where the unknown tran-
sition probability function is a linear func-
tion of a given feature mapping, and the re-
ward function can change arbitrarily episode
by episode. We propose an optimistic policy
optimization algorithm POWERS and show
that it can achieve Õ(dH

√
T ) regret, where

H is the length of the episode, T is the num-
ber of interaction with the MDP, and d is the
dimension of the feature mapping. Further-
more, we also prove a matching lower bound
of Ω̃(dH

√
T ) up to logarithmic factors. Our

key technical contributions are two-fold: (1)
a new value function estimator based on im-
portance weighting; and (2) a tighter confi-
dence set for the transition kernel. They to-
gether lead to the nearly minimax optimal
regret.

1 INTRODUCTION

The goal of reinforcement learning (RL) is to design
a policy to maximize the reward through observation
from interaction with the unknown environment. In
reinforcement learning, the Markov decision process
(MDP) (Puterman, 1994) is a typical model to de-
scribe the unknown environment and widely used to
analyze the sequential dynamic environment. In this
work, we consider episodic MDPs with a finite hori-
zon. Traditional MDPs often assume the unknown
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transition probability function is fixed and the reward
function is stochastic, which means the reward of each
state-action pair follows an unknown stationary dis-
tribution. Yet, in many real world models, the reward
function is not fixed and may change over time. In
order to capture the changed or even adversarial re-
ward, Even-Dar et al. (2009) first introduced the con-
cept of adversarial MDP model and proposed MDP-
Expert (MDP-E) algorithm, which attains Õ(τ2

√
T )

regret with τ being the mixing time of the MDP, for
known transition probability function and full informa-
tion of the reward function. In a concurrent work, Yu
et al. (2009) proposed an algorithm in the same setting

and obtained Õ(T 2/3) regret. There is a line of fol-
low up work studying RL for adversarial MDPs (Neu
et al., 2010, 2012; Zimin and Neu, 2013; Dekel and
Hazan, 2013; Rosenberg and Mansour, 2019a; Efroni
et al., 2020), which studies various settings depend-
ing on whether the transition probability function is
known, and whether the feedback is full-information
or bandit. Please see the related work section for a
more detailed discussion.

However, most existing works on adversarial MDP are
in the tabular MDP setting, where both the number of
actions and states are finite, and the action-value func-
tion is represented by a table. In many real-world RL
problems, the state and action spaces are large or even
infinite. A widely used method to overcome the curse
of large state and action spaces is function approxima-
tion, which reparameterizes the tabular action-value
function as a function over some feature mapping that
maps the state and action to a low-dimensional space.
Learning adversarial MDPs with linear function ap-
proximation is still understudied. Some existing works
(Tamar et al., 2014; Zhang et al., 2020; Wang and Zou,
2021) study learning optimal policies for robust MDPs
with function approximation under specific MDP as-
sumptions, which are not directly applicable to gen-
eral adversarial MDPs. A notable existing work is Cai
et al. (2020), which studies general adversarial MDPs
with linear function approximation. In particular, Cai
et al. (2020) proposed an optimistic variant of proxi-
mal policy optimization algorithm for the linear kernel
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MDP (Jia et al., 2020; Ayoub et al., 2020; Zhou et al.,
2021b) with unknown transition probability and full
reward information in the adversarial setting, which
achieves Õ(

√
d2H3T ) regret. Here H is the length of

the episode, T is the number of interactions with the
MDP and d is the dimension of the feature mapping.

In this paper, we seek a computationally efficient and
statistically optimal algorithm for learning adversarial
MDPs. The focus of this work is the unknown tran-
sition and full information setting. We first propose
an algorithm called optimistic Policy Optimization
With BERnstein bonuS (POWERS) for adversar-
ial linear mixture MDP (See Definition for more de-
tails) with full information feedback. At a high level,
our algorithm POWERS is similar to Optimistic-PPO
(OPPO) algorithm (Cai et al., 2020), which can also
be seen as an extension of MDP-Expert (MDP-E)
with linear function. More specifically, POWERS
consists of two main steps in each round: (1) one-
step least-square temporal difference (LSTD) learn-
ing along with exploration bonus for policy evalu-
ation; and (2) mirror descent on the policy space
for policy improvement. Our key algorithmic con-
tributions include a weighted LSTD algorithm which
takes into the variance of the Bellman residue into
account, and a Bernstein-type bonus for exploration
based on the principle of “optimism-in-the-face-of-
uncertainty” (Abbasi-Yadkori et al., 2011). We prove

that POWERS achieves Õ(dH
√
T ) regret with high

probability, where H is the length of the episode, T
is the number of interactions with the MDP and d is
the dimension of the feature mapping. We also prove
an Ω̃(dH

√
T ) lower bound for adversarially learning

linear kernel MDPs. Our upper bound matches the
lower bound up to logarithmic factors, which suggests
that our algorithm is nearly minimax optimal. To the
best of our knowledge, our algorithm is the first com-
putationally efficient and statistical (nearly) optimal
algorithm for adversarial MDPs in the unknown tran-
sition and full reward information setting.

Notation. We use lower case letters to denote scalars,
and use lower and upper case boldface letters to de-
note vectors and matrices respectively. For a vector
x ∈ Rd and matrix Σ ∈ Rd×d, we denote by ‖x‖2
the Euclidean norm, ‖x‖1 =

∑d
i=1 |xi|, and ‖x‖Σ =√

x>Σx. For two sequences {an} and {bn}, we write
an = O(bn) if there exists an absolute constant C such
that an ≤ Cbn, and we write an = Ω(bn) if there ex-
ists an absolute constant C such that an ≥ Cbn. We
use Õ(·) and Ω̃(·) to further hide the logarithmic fac-
tors. For any a ≤ b ∈ R, x ∈ R, let [x][a,b] denote
a ·1(x ≤ a)+x ·1(a ≤ x ≤ b)+ b ·1(b ≤ x), where 1(·)
is the indicator function. For a positive integer n, we
use [n] = {1, 2, .., n} to denote the set of integers from

1 to n.

2 RELATED WORK

RL with adversarial reward. There is a long line of
research on learning adversarial MDPs, where the re-
ward function is adversarially chosen at the beginning
of each episode and can change arbitrarily across dif-
ferent episodes (Even-Dar et al., 2009; Yu et al., 2009;
Gergely Neu et al., 2010; Neu et al., 2010; Zimin and
Neu, 2013; Neu et al., 2012; Rosenberg and Mansour,
2019a,b; Wang et al., 2019; Cai et al., 2020; Efroni
et al., 2020). The seminal works by Even-Dar et al.
(2009); Yu et al. (2009) are in the known transition
probability and full reward information setting. In the
known transition and bandit feedback on the reward
setting, Gergely Neu et al. (2010) proposed MDP-

EXP3 algorithm and obtained Õ(T 2/3) regret. Neu
et al. (2010) proposed Bandit O-SSP algorithm which

achieves Õ(
√
T/α) regret with an addition assumption

that all states are reachable with probability α > 0 for
any policy. Zimin and Neu (2013) further proposed
O-REPS algorithm, which improves the regret from
Õ(T 2/3) to Õ(

√
T ) without any additional assumption.

In the unknown transition but full reward information
setting, Neu et al. (2012) proposed FPOP algorithm

that achieves Õ(SA
√
T ) regret. Rosenberg and Man-

sour (2019a) proposed UC-O-REP algorithm and im-

proved the regret to Õ(S
√
AT ). In the most challeng-

ing unknown transition and bandit reward feedback
setting, Rosenberg and Mansour (2019b) proposed
Shifted Bandit UC-O-REPS algorithm which achieves
Õ(T 3/4) regret. Rosenberg and Mansour (2019b) also
proposed Bounded Bandit UC-O-REPS algorithm and
obtained Õ(

√
T/α) regret under the assumption that

all states are reachable with probability α > 0 for any
policy. Jin et al. (2020a) proposed UOB-REPS algo-

rithm that achieves Õ(
√
T ) regret without the addi-

tional assumption made by Rosenberg and Mansour
(2019b). The focus of this paper is the unknown tran-
sition but full reward information setting.

RL with linear function approximation. Re-
cently, there emerges a large body of literature on solv-
ing MDP with linear function approximation. These
works can be generally divided into three lines based
on the specific assumption on the underlying MDP.
The first line of work (Sun et al., 2019; Du et al.,
2019) is based on the low Bellman rank assumption
(Jiang et al., 2017), which assumes a low-rank factor-
ization of the Bellman error matrix. The second line
of work (Wang et al., 2019; He et al., 2021; Zanette
et al., 2020a) focuses on the linear MDP (Yang and
Wang, 2019a; Jin et al., 2020b), where the transi-
tion probability function and reward function are pa-
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rameterized as a linear function of a feature mapping
φ : S ×A → Rd. Later, Zanette et al. (2020b) made a
weaker assumption called low inherent Bellman error
and proposed Eleanor algorithm. The last line of work
(Cai et al., 2020; Yang and Wang, 2019b; He et al.,
2021; Modi et al., 2019; Zhou et al., 2021a) is based on
the linear mixture/kernel MDP (Jia et al., 2020; Ay-
oub et al., 2020; Zhou et al., 2021b; Wu et al., 2022),
where the transition probability function can be pa-
rameterized as a linear function of a feature mapping
φ : S×A×S → Rd. Note that none of the above work
with linear function approximation can handle adver-
sarially chosen reward with Cai et al. (2020) being a
notable exception. Our paper also considers the linear
kernel MDP but with an adversarial reward function.

RL with policy gradient. Our work is also re-
lated to policy optimization and policy gradient meth-
ods (Williams, 1992; Baxter and Bartlett, 2000; Sut-
ton et al., 1999; Kakade, 2001; Kakade and Lang-
ford, 2002; Kakade et al., 2003; Bagnell and Schnei-
der, 2003; Schulman et al., 2015, 2017; Abbasi-Yadkori
et al., 2019a,b; Cai et al., 2020; Hao et al., 2020; Efroni
et al., 2020), among which the most related works to
ours are trust-region policy optimization (Schulman
et al., 2015), proximal policy optimization (Schulman
et al., 2017), Politex (Abbasi-Yadkori et al., 2019a),
EE-Politex (Abbasi-Yadkori et al., 2019b), AAPI (Hao
et al., 2020) and OPPO (Cai et al., 2020). More specif-
ically, Cai et al. (2020) proposed the optimistic vari-
ant of the Proximal Policy Optimization algorithm for
adversarial linear kernel MDP, which can be seen as
an extension of MDP-E. Abbasi-Yadkori et al. (2019a)
proposed Politex algorithm with least-squares policy
evaluation for infinite-horizon average-reward MDPs,
which can be seen a generalization of the MDP-E
(Even-Dar et al., 2009). In fact, MDP-E is equiva-
lent to TRPO/PPO (Schulman et al., 2015, 2017) as
shown by Neu et al. (2017). Our algorithm can be seen
as a nontrivial extension of OPPO and MDP-E.

3 PRELIMINARIES

Time-inhomogeneous, episodic adversar-
ial MDPs. In this paper, we consider a
time-inhomogeneous, episodic Markov decision
process (MDP), which is denoted by a tuple
M = M(S,A, H, {rkh}h∈[H],k∈[K], {Ph}Hh=1). Here S is
the state space, A is the action space, H is the length
of the episode, rkh : S ×A → [0, 1] is the deterministic
reward function at stage h of the k-th episode.
Ph(s′|s, a) is the transition probability function which
denotes the probability for state s to transfer to state
s′ given action a at stage h. For simplicity, we assume
the reward function rkh is adversarially chosen by the
environment at the beginning of the k-th episode and

known after the episode k. A policy π = {πh}Hh=1 is a
collection of functions πh, where each πh : S → ∆(A)
is a function which maps a state s to distributions
over action set A at stage h. For each state-action pair
(s, a) ∈ S × A, we denote the action-value function
Qπk,h and the value function V πk,h as follows:

Qπk,h(s, a) = rkh(s, a)

+ E
[∑H

h′=h+1r
k
h′(sh′ , ah′)

∣∣∣∣sh = s, ah = a

]
,

V πk,h(s) = Ea∼πh(·|s)
[
Qπk,h(s, a)

]
, V πk,H+1(s) = 0.

In the definition of Qπk,h, we denote by E[·]
the expectation over the state-action se-
quences (sh, ah, sh+1, ah+1, .., sH , aH), where
sh = s, ah = a and sh′+1 ∼ Ph(·|sh′ , ah′), ah′+1 ∼
πh′+1(·|sh′+1)(h′ = h, h + 1, ..,H − 1). For simplicity,
for any function V : S → R, we denote

[PhV ](s, a) = Es′∼Ph(·|s,a)V (s′),

[VhV ](s, a) = [PhV 2](s, a)−
(
[PhV ](s, a)

)2
, (3.1)

where V 2 is a shorthand for the function whose value
at state s is

(
V (s)

)2
. Using this notation, for policy

π, we have the following Bellman equality Qπk,h(s, a) =

rkh(s, a) + [PhV πk,h+1](s, a).

In the online learning setting, for each episode k ≥ 1,
at the beginning of the episode k, the agent deter-
mines a policy πk to be followed in this episode and
we assume that the initial state sk1 is fixed across
all episodes1. At each stage h ∈ [H], the agent ob-
serve the state skh, choose an action following the pol-
icy akh ∼ πkh(·|skh) and observe the next state with
skh+1 ∼ Ph(·|skh, akh). For the adversarial environment,
we focus on the expected regret, which is the expected
loss of the algorithm relative to the best-fixed policy
in hindsight (Cesa-Bianchi and Lugosi, 2006):

Regret(M,K) = sup
π

∑K
k=1

(
V πk,1(sk1)− V πk

k,1 (sk1)
)
.

For simplicity, we denote the optimal policy π∗ as
π∗ = supπ

∑K
k=1 V

π
k,1(sk1). Therefore, we have the

following Bellman optimally equation Q∗k,h(s, a) =

rkh(s, a)+[PhV ∗k,h](s, a), where Q∗k,h(s, a), V ∗k,h(s, a) are
the corresponding optimal action-value function and
value function. For any two policies π and π′, we de-
fine the Kullback–Leibler divergence between them as
follows DKL

(
π‖π′

)
=
∑
a∈A π(a) log

(
π(a)/π′(a)

)
.

Linear Mixture MDPs. In this work, we focus on a
special class of MDPs called linear mixture MDPs (Jia
et al., 2020; Ayoub et al., 2020; Zhou et al., 2021b),

1While we study fixed initial state, our results readily
can generalize to the case that the initial state sk1 is random
chosen from a fixed distribution across all episodes.
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where the transition probability function is a linear
function of a given feature mapping φ : S × A× S →
Rd. The formal definition of a linear kernel MDP is as
follows:

Definition 3.1. M(S,A, H, {rkh}h∈[H],k∈[K], {Ph}Hh=1)
is called a inhomogenous, episode B-bounded linear
mixture MDP if there exist a known feature mapping
φ(s′|s, a) : S × A × S → Rd and an unknown vector
θh ∈ Rd with ‖θ‖2 ≤ B 2, such that

• For any state-action-next-state triplet (s, a, s′) ∈
S ×A× S, we have Ph(s′|s, a) = 〈φ(s′|s, a),θh〉;

• For any bounded function V : S → [0, 1] and any
tuple (s, a) ∈ S×A, we have ‖φV (s, a)‖2 ≤ 1, where
φV (s, a) =

∑
s′∈S φ(s′|s, a)V (s′) ∈ Rd.

Based on Definition 3.1, we can see that for any linear
mixture MDP M and function V : S → R, we have
the following properties:

[PhV ](s, a) =
∑
s′∈SPh(s′|s, a)V (s′)

=
∑
s′∈S〈φ(s′|s, a), θh〉V (s′)

= 〈φV (s, a),θh〉, (3.2)

and

[VhV ](s, a) =
∑
s′∈SPh(s′|s, a)V 2(s′)

−
[∑

s′∈SPh(·|s, a)V (s′)
]2

= 〈φV 2(s, a),θh〉 − [〈φV (s, a), θh〉]2.
(3.3)

(3.2) and (3.3) suggest that both the conditional ex-
pectation and the variance of a function V can be cal-
culated based on certain linear functions of different
feature mappings, i.e., φV and φV 2 . Therefore, we can
estimate them by estimating the corresponding linear
functions.

4 THE PROPOSED ALGORITHM

In this section, we propose an algorithm POWERS to
learn the episodic linear mixture MDP (see Definition
3.1) with adversarial rewards, which is illustrated in
Algorithm 1. At a high level, POWERS is an im-
proved version of the Optimistic-PPO (OPPO) algo-
rithm (Cai et al., 2020) with a refined estimate of the
action-value function Qk,h(s, a). The POWERS can
be divided into two phases: (1) policy improvement
phase and (2) policy evaluation phase.

Policy improvement phase (Line 5 to Line 10):
In the policy improvement phase, POWERS calculates

2For any MDP M , parameter B cannot be arbitrarily
small. More specifically, parameter B should satisfy B ≥ 1.

its policy πk for the current episode, based on its pre-
vious policy πk−1 using the proximal policy optimiza-
tion (PPO) method (Schulman et al., 2017). In detail,
let sk1 be the starting state at the k-th episode, then
following PPO, we update πk as a solution to the fol-
lowing optimization problem:

πk ← argmax
π

[Lk−1(π)− α−1D̃KL(π, πk−1)], (4.1)

where

Lk−1(π) = Eπk−1

[ H∑
h=1

〈Qk−1,h(sh, ·), πkh(·|sh)〉
∣∣∣∣s1 = sk1

]

is proportional to the first-order Taylor approximation

of V
πk−1
h

k−1,h at πk−1, and replaces the action-value func-

tion Q
πk−1
h

k−1,h(·, ·) by the estimated one Qk−1,h(·, ·), and

D̃KL(π, πk−1)

= Eπk−1

[∑H
h=1DKL(πh(·|sh), πkh(·|sh))

∣∣∣∣s1 = sk1

]
is the sum of KL-divergences between πh and πk−1h ,
which encourages πk to stay close to πk−1 to ensure
the above first-order Taylor approximation is accurate
enough. The closed-form solution to (4.1) is in Line 7.
Here α > 0 is the step size of the exponential update.
Note that the update rule in Line 7 is also the same as
the MDP-E algorithm (Even-Dar et al., 2009). After
obtaining πk, POWERS chooses action akh based on
the new policy πkh and the current state skh. It then
observes the next state skh+1 and the adversarial re-

ward function rkh(·, ·).

Policy evaluation phase (Line 11 to Line 23):
In the policy evaluation phase, POWERS evaluates
the policy πk by constructing the action-value function
Qk,h and the value function Vk,h for policy πk based
on the observed data, which are optimistic estimates of

the action-value function Qπ
k

k,h and the value function

V π
k

k,h respectively.

Specifically, for each episode k ∈ [K] and each stage

h ∈ [H], POWERS maintains an estimator θ̂k,h and

an uncentered covariance matrix Σ̂k,h based on the ob-
served data before the k-th episode. Then POWERS
recursively computes the optimistic Qk,h, Vk,h as fol-
lows:

Qk,h(s, a) =
[
rkh(s, a) +

〈
θ̂k,h,φVk,h+1

(s, a)
〉

+ β̂k
∥∥Σ̂−1/2k,h φVk,h+1

(s, a)
∥∥
2

]
[0,H−h+1]

,

Vk,h(s) = Ea∼πk
h(·|s)

[Qk,h(s, a)],
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Algorithm 1 POWERS

Require: Regularization parameter λ, learning rate α.

1: Set initial policy
{
π0
h(·|·)

}H
h=1

as uniform distribution on the action set A
2: For h ∈ [H + 1], set the initial value functions Q0,h(·, ·)← 0, V0,h(·)← 0

3: For h ∈ [H], set Σ̂1,h, Σ̃1,h ← λI, b̂1,h, b̃1,h ← 0, θ̂1,h, θ̃1,h ← 0
4: for k = 1, . . . ,K do
5: Receive state sk1
6: for h = 1, . . . ,H do
7: Update the policy by πkh(·|·) ∝ πk−1h (·|·) exp

{
αQk−1,h(·, ·)

}
8: Take action akh ∼ πkh(·|skh) and receive next state skh+1 ∼ Ph(·|skh, akh)

9: Observe the adversarial reward function rkh(·, ·)
10: end for
11: Set Vk,H+1(·)← 0
12: for h = H, . . . , 1 do

13: Set Qk,h(·, ·)←
[
rkh(·, ·) +

〈
θ̂k,h,φVk,h+1

(·, ·)
〉

+ β̂k
∥∥Σ̂−1/2k,h φVk,h+1

(·, ·)
∥∥
2

]
[0,H−h+1]

14: Set Vk,h(·)← Ea∼πk
h(·|·)

[Qk,h(·, a)]

15: Set the estimated variance [V̄k,hVk,h+1](skh, a
k
h) as in (4.2)

16: Set the bonus term Ek,h as in (4.3)

17: σ̄k,h ←
√

max
{
H2/d, [V̄k,hVk,h+1](skh, a

k
h) + Ek,h

}
18: Σ̂k+1,h ← Σ̂k,h + σ̄−2k,hφVk,h+1

(skh, a
k
h)φVk,h+1

(skh, a
k
h)>

19: b̂k+1,h ← b̂k,h + σ̄−2k,hφVk,h+1
(skh, a

k
h)Vk,h+1(skh+1)

20: Σ̃k+1,h ← Σ̃k,h + φV 2
k,h+1

(skh, a
k
h)φV 2

k,h+1
(skh, a

k
h)>

21: b̃k+1,h ← b̃k,h + φV 2
k,h+1

(skh, a
k
h)V 2

k,h+1(skh+1)

22: θ̂k+1,h ← Σ̂−1k+1,hb̂k+1,h, θ̃k+1,h ← Σ̃−1k+1,hb̃k+1,h

23: end for
24: end for

where β̂k is the radius of the confidence ball defined
as:

β̂k = 8
√
d log(1 + k/λ) log(4k2H/δ)

+ 4
√
d log(4k2H/δ) +

√
λB.

Now we illustrate how to construct the estimator θ̂k,h
and the covariance matrix Σ̂k,h, which is the key dif-
ference compared with OPPO proposed in Cai et al.
(2020). Recall (3.2), we know that the expectation
of the random variables Vk,h(sk,h+1) can be written
as a linear function with weight vector θh. There-
fore, a natural way to estimate θh is to consider it
as the unknown weight vector of a stochastic linear
bandits problem with context φVk,h

(skh, a
k
h) and target

Vk,h(sk,h+1), and apply algorithms for linear bandits
such as OFUL (Abbasi-Yadkori et al., 2011), to obtain

the estimator θ̂k,h. Such an approach is adopted by
Cai et al. (2020).

However, OFUL uses the vanilla linear regression to
construct θ̂k,h, which is limited to the homoscedastic
noises case. For the linear mixture MDP, the noises are
actually heteroscedastic as each target enjoys different
noises. Thus the vanilla linear regression is known as

statistically inefficient (Kirschner and Krause, 2018).
Inspired by Kirschner and Krause (2018); Zhou et al.
(2021a), we adopt the weighted linear regression to

construct θ̂k,h, which is the solution to the following
weighted regression problem:

θ̂k,h ← arg min
θ∈Rd

λ‖θ‖22

+
∑k−1
i=1

[
〈φVi,h+1

(sih, a
i
h),θ〉 − Vi,h+1(sih+1)

]
/σ̄2

i,h,

where σ̄2
i,h is the upper confidence bound of the vari-

ance [VhVi,h+1(sih, a
i
h)]. Σ̂k,h is the weighted “covari-

ance” matrix of φVi,h+1
(sih, a

i
h) weighted by 1/σ̄2

i,h.

The online update rules for θ̂k,h and Σ̂k,h are shown
in Lines 18 and 22.

Next we show how to construct the variance upper
bounds σ̄2

i,h. Due to (3.3), it suffices to estimate

〈φVk,h+1
(skh, a

k
h),θh〉 and 〈φV 2

k,h+1
(skh, a

k
h), θh〉. For the

first one, we use 〈φVk,h+1
(skh, a

k
h), θ̂k,h〉 to estimate

it. For the second one, we use 〈φV 2
k,h+1

(skh, a
k
h), θ̃k,h〉,

where θ̃k,h is the linear regression estimator with con-
texts φV 2

i,h+1
(sih, a

i
h) and targets V 2

i,h+1(si+1
h ). Its up-

date rule is shown in Line 22. Notice that the stochas-



Near-optimal Policy Optimization Algorithms for Learning Adversarial Linear Mixture MDPs

tic noise in the linear regression only comes from the
stochastic transition probability Ph rather than the
adversarial reward. Since Ph is fixed across different
episodes, we can bound the estimation error and spec-
ify the choice of σ̄2

k,h in the following lemma.

Lemma 4.1. We define the the estimated variance
[V̄k,hVk,h+1](skh, a

k
h) as

[V̄k,hVk,h+1](skh, a
k
h) =

[〈
φV 2

k,h+1
(skh, a

k
h), θ̃k,h

〉]
[0,H2]

−
[〈
φVk,h+1

(skh, a
k
h), θ̂k,h

〉
[0,H]

]2
,

(4.2)

then with probability at least 1−3δ, for all k ∈ [K], h ∈
[H], we have∥∥[V̄hVk,h+1](skh, a

k
h)− [VhVk,h+1](skh, a

k
h)
∥∥ ≤ Ek,h,

where Ek,h is defined as

Ek,h = min
{
β̃k
∥∥Σ̃−1/2k,h φV 2

k,h+1
(skh, a

k
h)
∥∥
2
, H2

}
+ min

{
2Hβ̄k

∥∥Σ̂−1/2k,h φVk,h+1
(skh, a

k
h)
∥∥
2
, H2

}
,

β̃k = 8H2
√
d log

(
1 + kH4/(dλ)

)
log(4k2H/δ)

+ 4H2 log(4k2H/δ) +
√
λB,

β̄k = 8d
√

log(1 + k/λ) log(4k2H/δ)

+ 4
√
d log(4k2H/δ) +

√
λB. (4.3)

For the estimator θ̂k,h, we have

θh ∈ Ck,h = {θ :
∥∥Σ̂1/2

k,h(θ − θ̂k,h)
∥∥ ≤ β̂k}. (4.4)

By Lemma 4.1, we know that in order to guarantee
σ̄2
k,h is an upper bound of the variance, it suffices to

set it as [V̄k,hVk,h+1](skh, a
k
h) + Ek,h. Finally, due to

the technical reason, we set σ̄2
k,h as

σ̄k,h =
√

max
{
H2/d, [V̄k,hVk,h+1](skh, a

k
h) + Ek,h

}
.

Furthermore, according to (4.4), we have

Qk,h(s, a) =
[
rkh(s, a) + max

θ∈Ck,h

〈
φVk,h+1

,θ
〉]

[0,H−h+1]

≥
[
rkh(s, a) +

〈
φVk,h+1

,θh
〉]

[0,H−h+1]
,

and by (3.2), it is easy to show that the optimistic
action-value function Qk,h(s, a) and the optimistic
value function Vk,h(s) are indeed upper bounds of the

true action-value function Qπ
k

k,h and the true value

function V π
k

k,h, respectively.

4.1 Computational complexity

The computational complexity of POWERS is re-
lated to the property of the given feature mapping
φ(s′|s, a) and we consider a special class of linear mix-
ture MDPs studied by Yang and Wang (2019b); Zhou
et al. (2021b,a). For this special class of linear mixture
MDPs, we have

[φ(s′|s, a)]i = [ψ(s′)]i · [µ(s, a)]i, ∀i ∈ [d],

where ψ : S → Rd and µ : S × A → Rd.
Under this setting, for each function V , the vec-
tor φV (s, a) can be written as the product of
µ(s, a) and

∑
s′∈S ψ(s′)V (s′). Furthermore, the

term
∑
s′∈S ψ(s′)V (s′) can be estimated by Monte

Carlo method and in this work, we assume an ac-
cess to the oracle O which can compute the term∑
s′∈S ψ(s′)V (s′). We also assume the size of action

space is finite (|A| < ∞) and analyze the computa-
tional complexity of POWERS in the sequel.

Recall that POWERS can be divided into two
phases: (1) policy improvement; and (2) policy eval-
uation. For the policy evaluation phase, in order
to compute the vector φVk,h+1

(skh, a
k
h) and the vector

φV 2
k,h+1

(skh, a
k
h), POWERS needs to compute the term∑

s′∈S ψ(s′)φVk,h+1
(s′) and

∑
s′∈S ψ(s′)V 2

k,h+1(s′),
which need two accesses to the oracle O. Given the
vector φVk,h+1

(skh, a
k
h) and φVk,h+1

(skh, a
k
h), the covari-

ance matrix can be computed in O(d2) time, and

the estimators θ̂k+1,h and θ̃k+1,h can be computed in
O(d3) time. Therefore, the policy evaluation phase can
be computed in O(d3HK) time with O(HK) accesses
to the oracle O.

In the policy improvement phase, POWERS will up-
date the policy πkh(s|a) for each state-action pair (s, a):

πk+1
h (a|s) ∝ πkh(a|s) exp

{
αQk,h(s, a)

}
,

which leads to an O(|S||A|K) computation complex-
ity. In order to make the computation more efficient
for large state space or even continuous state space
S, an alternative approach is to calculate the policy
πkh(·|skh) directly. More specifically, in Line 8, we only
need the value of policy πkh for state skh , which can be
calculated as follows

πkh(a|skh) ∝ exp

{
α
k−1∑
i=1

Qi,h(skh, a)

}

∝ exp

{
α
k−1∑
i=1

[
rih(skh, a) +

〈
θ̂i,h,φVi,h+1

(skh, a)
〉

+ β̂i
∥∥Σ̂−1/2i,h φVi,h+1

(skh, a)
∥∥
2

]
[0,H−h+1]

}
.
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Therefore, given the covariance matrix Σ̂i,h, the es-

timator θ̂i,h and the term
∑
s′∈S ψ(s′)Vi,h+1(s′), the

policy πkh(·|skh) can be computed in O
(
d3K|A|

)
time

complexity and it will take in total O
(
d3HK2|A|

)
time complexity to compute all policies πkh(·|skh) for
k ∈ [K] and h ∈ [H]. By taking the best
of both computing approaches, the time complex-
ity for the policy improvement phase of POWERS is
O
(

min
(
d3HK2|A|, |S||A|K

))
.

Combining the time complexity of the two
phases, the total time complexity of POWERS
is O

(
min

(
d3HK2|A|, |S||A|K

)
+ d3HK

)
with

O(HK) accesses to the oracle O.

5 MAIN RESULTS

In this section, we provide the regret bound for our
algorithm POWERS. Here, T = KH is the number of
interactions with the MDP.

Theorem 5.1. For any linear mixture MDP M , if we
set the parameter λ = 1/B2 in POWERS, then with
probability at least 1 − 6δ, the regret of POWERS is
upper bounded as follows:

Regret(M,K) ≤ Õ
(
αTH2 + α−1H log |A|+

√
d2H2T

+
√
dH3T + d2H3 + d2.5H2.5

)
.

Remark 5.2. If we set the learning rate α =
O
(√

log |A|/(H2K)
)

in POWERS, then Theorem 5.1
suggests that with high probability, the regret
of POWERS is upper bounded by Õ(

√
d2H2T +√

dH3T + d2H3 + d2.5H2.5 +
√
H3 log |A|T ). When

T ≥ d3H3, d ≥ H, d ≥ log |A|, the regret can be

simplified as Õ(dH
√
T ). Compared with the result

of Cai et al. (2020), the POWERS improves the up-
per bound of regret by a factor of

√
H. In addi-

tion, compared with the UCRL-VTR+ algorithm pro-
posed by Zhou et al. (2021a) for episodic linear mix-
ture MDPs with deterministic rewards, our algorithm
POWERS provides a robustness guarantee against ad-
versarial rewards while achieving the same regret guar-
antee Õ(dH

√
T ).

The following theorem gives a lower bound of the re-
gret for any algorithms for learning the adversarial lin-
ear mixture MDPs.

Theorem 5.3. Suppose B ≥ 2, d ≥ 4, H ≥ 3,K ≥
(d − 1)2H/2, then for any algorithm, there exists a
time-inhomogenous, episodic B-bounded adversarial
linear mixture MDP M , such that the expected regret
for this MDP is lower bounded by Ω(dH

√
T ).

Remark 5.4. Theorem 5.3 suggests that when the
number of episodes K is large enough, for any al-
gorithm, the regret of learning time-inhomogenous

episodic adversarial linear mixture MDPs is at least
Ω(dH

√
T ). Furthermore, the lower bound of regret

in Theorem 5.3 matches the upper bound in Theo-
rem 5.1 up to logarithmic factors, which suggests that
POWERS is nearly minimax optimal for learning ad-
versarial linear mixture MDPs.

6 PROOF OVERVIEW

In this section, we provide the proof sketch of Theo-
rem 5.1. The complete proof is deferred to the sup-
plementary material. Our proof is based on Lemma
4.1, which says with high probability, the true param-
eter θh is contained in the confidence set Ck,h. For
simplicity, we denote by E the event when the result
of Lemma 4.1 holds and due to Lemma 4.1, we have
Pr(E) ≥ 1−3δ. Recall the definition of regret, we have

Regret(K) =
∑K
k=1

(
V ∗k,1(sk1)− Vk,1(sk1)

)︸ ︷︷ ︸
I1

+
∑K
k=1

(
Vk,1(sk1)− V πk

k,1 (sk1)
)︸ ︷︷ ︸

I2

.

Therefore, the proof can be divided into two main
steps.

Step 1: Bounding the term I1.

Lemma 6.1. On the event E , for all k ∈ [K], we have

V ∗k,1(sk1)− Vk,1(sk1) ≤ E
[ H∑
h=1

{
Ea∼π∗h(·|sh)

[
Qk,h(sh, a)

]
− Ea∼πk

h(·|sh)
[
Qk,h(sh, a)

]∣∣s1 = sk1

}]
.

Here E[·|s = sk1 ] is the expectation with respect to the
randomness of the state-action sequence {(sh, ah)}Hh=1,
where ah ∼ π∗h(·|sh) and sh+1 ∼ Ph(·|sh, ah).

Lemma 6.1 suggests that the regret can be decom-
posed as the sum of the advantages at different stages
h. Furthermore, since the initial state sk1 and the op-
timal policy π∗ is fixed across different episode k, the
state-action sequence (s1, a1, .., sH , aH) induced by the
policy π∗ follows the same distribution across different
episode k.

In each episode k, the POWERS update the policy πkh
by the following rule:

πk+1
h (a|s) ∝ πkh(a|s) exp

{
αQk,h(s, a)

}
.

By the above update rule, we have the following
lemma.

Lemma 6.2. On the event E , for all k ∈ [K], h ∈ [H],
s ∈ S, we have

Ea∼π∗h(·|s)
[
Qk,h(s, a)

]
− Ea∼πk

h(·|s)
[
Qk,h(s, a)

]
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≤ αH2

2
+ α−1

(
DKL

(
π∗h(·|s)‖πkh(·|s)

)
−DKL

(
π∗h(·|s)‖πk+1

h (·|s)
))
.

Substituting the result of Lemma 6.2 into the result
of Lemma 4.1, we have the following upper bound for
the term I1:

I1 ≤
αKH3

2
+

K∑
k=1

α−1E
[ H∑
h=1

{
DKL

(
π∗h(·|sh)‖πkh(·|sh)

)
−KL

(
π∗h(·|sh)‖πk+1

h (·|sh)
)}]

=
αKH3

2
+ α−1E

[ H∑
h=1

{
DKL

(
π∗h(·|sh)‖π1

h(·|sh)
)

−DKL

(
π∗h(·|sh)‖πK+1

h (·|sh)
)}]

≤ αKH3

2
+ α−1E

[ H∑
h=1

DKL

(
π∗h(·|sh)‖π1

h(·|sh)
)]

≤ αKH3

2
+ α−1H log |A|,

where s1 is the fixed initial state, ah ∼ π∗h(·|sh), sh+1 ∼
Ph(·|sh, ah), the second inequality holds due to Kull-
back–Leibler divergence is non-negative and the third
inequality holds due to the fact that initial policy π1

h

is uniform over the action space A.

Step 2: Bounding the term I2.

Lemma 6.3. On the event E , for all k ∈ [K], h ∈ [H],
we have

Qk,h(skh, a
k
h)−Qπ

k

k,h(skh, a
k
h)

≤
[
Ph(Vk,h+1 − V π

k

k,h+1)
]
(skh, a

k
h)

+ 2β̂kσ̄k,h min
{∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥
2
, 1
}
.

Lemma 6.3 suggests that the difference between the

true action-value function Qπ
k

k,h(skh, a
k
h) and the esti-

mated value function Qk,h(skh, a
k
h) can be bounded by

the expected difference at the next-stage difference.
Furthermore, for the expected difference at the next-
stage and the exact difference at the next-stage, we
have the following equation[

Ph(Vk,h+1 − V π
k

k,h+1)
]
(skh, a

k
h)

= Qk,h+1(skh+1, a
k
h+1)−Qπ

k

k,h+1(skh+1, a
k
h+1)

+Ah,k +Bh+1,k,

where Ah,k = [Ph(Vk,h+1 − V π
k

k,h+1)
]
(skh, a

k
h) −(

Vk,h+1(skh+1) − V π
k

k,h+1(skh+1) is the noise from the

state transition and Bh,k = Ea∼πk
h(·|s

k
h)

[
Qk,h(skh, a) −

Qπ
k

k,h(skh, a)
]
−
(
Qk,h(skh, a

k
h)−Qπk

k,h(skh, a
k
h

)
is the noise

from the stochastic policy. These noises form a martin-
gale difference sequence and we define two high prob-
ability events for them:

E1 =

{
∀h ∈ [H],

K∑
k=1

H∑
h′=h

Ah′,k +Bh′,k

≤ 4H
√
T log(H/δ)

}
,

E2 =

{ K∑
k=1

H∑
h=1

Ah,k ≤ 2H
√

2T log(1/δ)

}
.

Then according to the Azuma–Hoeffding inequality,
we have Pr(E1) ≥ 1 − δ and Pr(E2) ≥ 1 − δ. Fur-
thermore, on the events E1 and E2, we can telescope
the inequality in Lemma 6.3 over the K episodes, and
obtain the following lemma.

Lemma 6.4. On the event E ∩E1∩E2, for all h ∈ [H],
we have

K∑
k=1

(
Vk,h(skh)− V π

k

k,h(skh)
)

≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ)

+ 4H
√
T log(H/δ),

and

K∑
k=1

H∑
h=1

[
Ph(Vk,h+1 − V π

k

k,h+1)
]
(skh, a

k
h)

≤ 2Hβ̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ)

+ 4H2
√
T log(H/δ).

Lemma 6.4 shows that the regret can be up-
per bounded by the total estimated vari-

ance
∑K
k=1

∑H
h=1 σ̄

2
k,h. For the total variance∑K

k=1

∑H
h=1[VhV π

k

k,h+1](skh, a
k
h), we introduce the high

probability event E3:

E3 =
{ K∑
k=1

H∑
h=1

[VhV π
k

k,h+1](skh, a
k
h) ≤ 3HT + 3H3 log(1/δ)

}
.

Since the stochastic noise in the linear regression
only comes from the stochastic transition probabil-
ity Ph rather than the adversarial reward, and Ph is
fixed across different episodes, Lemma C.5 in Jin et al.
(2018) suggests that Pr(E3) ≥ 1 − δ and on the event
E ∩ E1 ∩ E2 ∩ E3, the following lemma gives a upper
bound of the total estimated variance.
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Lemma 6.5. On the event E ∩ E1 ∩ E2 ∩ E3, we have

K∑
k=1

H∑
h=1

σ̄2
k,h ≤ 2HT/d+ 179HT

+ 165d3H4 log2(4K2H/δ) log2(1 +KH4/λ)

+ 2062H5d2 log2(4K2H/δ) log2(1 +K/λ).

Combining the results of Lemmas 6.4 and 6.5, the term
I2 can be upper bounded by

I2 = Õ(
√
dH3T +

√
d2H2T + d2H3 + d2.5H2.5).

Finally, combining the upper bounds of I1 and I2, we
have

Regret(K) = I1 + I2

= Õ(
√
dH3T +

√
d2H2T + d2H3 + d2.5H2.5

+ αH2 + α−1H log |A|).

7 EXPERIMENTS

In this section, we carry out experiments to evaluate
the empirical performance of our algorithm POWERS.

In this experiment, we construct the MDP M with di-
mension d = 5 and episode length H = 20. In this
MDP, the state space S consists of H + 2 different
states s1, .., sH+2 and the action space A = {−1, 1}d−1
consists of 2d−1 different actions. For each stage
h ∈ [H] and episode k ∈ [K], the adversarial reward
function rkh satisfies that rkh(sh,a) = 0, (1 ≤ h ≤
H + 1) and rkh(sH+2,a) = 1. For each stage h ∈ [H]
and corresponding transition probability function Ph,
sH+1 and sH+2 are absorbing states. For other states
sh(1 ≤ h ≤ H), the transition probability satisfies that

Ph(sh+1|sh,a) = 0.95− 〈0.01 · 1d−1,a〉,
Ph(sH+2|sh,a) = 0.05 + 〈0.01 · 1d−1,a〉,

where each 1d−1 is a (d− 1)-dimensional vector of all
ones. In the experiment, we set the regularization
parameter λ = 1, learning rate α = 1 and use grid
search to select the parameters β̂, β̃, β̄ which obtain
the best performance. We compare our algorithm with
two baseline benchmarks : Random (uniformly and
randomly choose actions from A) and OPPO (Cai
et al., 2020). The regrets of different algorithms for
the first 1000 episodes averaged over 20 runs are plot-
ted in Figure 1.

From Figure 1, it can be seen that both OPPO (Cai
et al., 2020) and POWERS obtain a sub-linear cumu-
lative regret. Moreover, we can see that POWERS
outperforms the OPPO algorithm. This is consistent
with our theoretical result in Theorem 5.1, which sug-
gests that POWERS has a better regret bound than
OPPO thanks to the use of Bernstein-type bonus.
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Figure 1: Cumulative regret comparison in the first
1000 episodes of different algorithms. Results are av-
eraged over 20 runs.

8 CONCLUSION AND FUTURE
WORK

In this work, we considered learning adversarial
Markov decision processes under the linear mixture
MDP assumption. We proposed a novel algorithm
POWERS and proved that with high probability, the
regret of POWERS is upper bounded by Õ(dH

√
T ),

which matches the lower bound up to logarithmic fac-
tors. Currently, our work requires the full informa-
tion feedback of the reward and it remains an open
problem that if there exists a provably efficient algo-
rithm for learning adversarial linear mixture MDPs
with bandit-feedback on the reward. We leave it as
future work.
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Supplementary Material:
Near-optimal Policy Optimization Algorithms for Learning

Adversarial Linear Mixture MDPs

A PROOF OF THE MAIN RESULTS

A.1 Proof of Theorem 5.1

In this section, we provide the proof of Theorems 5.1 and first propose the following lemmas.

Lemma A.1 (Azuma–Hoeffding inequality, Cesa-Bianchi and Lugosi 2006). Let {xi}ni=1 be a martingale differ-
ence sequence with respect to a filtration {Gi} satisfying |xi| ≤M for some constant M , xi is Gi+1-measurable,
E[xi|Gi] = 0. Then for any 0 < δ < 1, with probability at least 1 − δ, we have

n∑
i=1

xi ≤M
√

2n log(1/δ).

Lemma A.2. On the event E , for all k ∈ [K], h ∈ [H], s ∈ S, a ∈ A, we have

Qk,h(s, a) ≥ rkh(s, a) +
[
PhVk,h+1

]
(s, a).

Furthermore, on the event E , for all k ∈ [K], h ∈ [H], s ∈ S, a ∈ A, we have

Qk,h(s, a)−Qπ
k

k,h(s, a) ≥ 0, Vk,h(s)− V π
k

k,h(s) ≥ 0.

Proof of Lemma A.2. For the lower bound of Qk,h(s, a)−Qπk

k,h(s, a), we have

rkh(s, a) +
〈
θ̂k,h,φVk,h+1

(s, a)
〉

+ β̂k
∥∥Σ̂−1/2k,h φVk,h+1

(s, a)
∥∥
2

= rkh(s, a) +
[
PhVk,h+1

]
(s, a) +

〈
θ̂k,h − θh,φVk,h+1

(s, a)
〉

+ β̂k
∥∥Σ̂−1/2k,h φVk,h+1

(s, a)
∥∥
2

≥ rkh(s, a) +
[
PhVk,h+1

]
(s, a) + β̂k

∥∥Σ̂−1/2k,h φVk,h+1
(s, a)

∥∥
2
−
∥∥Σ̂1/2

k,h(θ − θ̂k,h)
∥∥
2

∥∥Σ̂−1/2k,h φVk,h+1
(s, a)

∥∥
2

≥ rkh(s, a) +
[
PhVk,h+1

]
(s, a), (A.1)

where the first inequality holds due to Cauchy-Schwarz inequality and the second inequality holds due to the
definition of event E . Therefore, we have

Qk,h(s, a) =
[
rkh(s, a) +

〈
θ̂k,h,φVk,h+1

(s, a)
〉

+ β̂k
∥∥Σ̂−1/2k,h φVk,h+1

(s, a)
∥∥
2

]
[0,H−h+1]

≥ min
{
rkh(s, a) +

[
PhVk,h+1

]
(s, a), H − h+ 1

}
≥ rkh(s, a) +

[
PhVk,h+1

]
(s, a), (A.2)

where the first inequality holds due to (A.1) and the second inequality holds due to rkh(s, a) +
[
PhVk,h+1

]
(s, a) ≤

1 + (H − h) = H − h+ 1. Now, we prove the second part of Lemma A.2 by induction. The statement holds for
stage h = H + 1, since

Vk,h(s) = V π
k

k,h(s) = 0.

When the second part of Lemma A.2 holds for stage h+ 1, we have

Qk,h(s, a) ≥ rkh(s, a) +
[
PhVk,h+1

]
(s, a)
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≥ rkh(s, a) +
[
PhV π

k

k,h+1

]
(s, a) (A.3)

= Qπ
k

(s, a),

where the first inequality holds due to (A.2) and the second inequality holds due to the induction assumption.
Furthermore, we have

Vk,h(s) = Ea∼πk
h(·|s)

[Qk,h(s, a)] ≥ Ea∼πk
h(·|s)

[Qπ
k

k,h(s, a)] = V π
k

k,h(s).

Therefore, we finish the induction step and complete the proof of Lemma A.2.

Lemma A.3. [Lemma 11, Abbasi-Yadkori et al. 2011] Let {xt}∞t=1 be a sequence in Rd, V0 = λI and define
Vt = V0 +

∑t
i=1 xix

>
i . If ‖xi‖2 ≤ L holds for each i, then for each t, we have

t∑
i=1

min
{

1, ‖xi‖V−1
i−1

}
≤ 2d log

(
dλ+ tL2

dλ

)
.

Proof of Theorem 5.1. For the regret, we have

Regret(K) = sup
π

K∑
k=1

(
V πk,1(sk1)− V π

k

k,1 (sk1)
)

=
K∑
k=1

(
V ∗k,1(sk1)− V π

k

k,1 (sk1)
)

=
K∑
k=1

(
V ∗k,1(sk1)− Vk,1(sk1)

)
︸ ︷︷ ︸

I1

+
K∑
k=1

(
Vk,1(sk1)− V π

k

k,1 (sk1)
)

︸ ︷︷ ︸
I2

.

For the term I1, applying Lemma 6.1, we have

I1 =

K∑
k=1

(
V ∗k,1(sk1)− Vk,1(sk1)

)
≤

K∑
k=1

E
[ H∑
h=1

{
Ea∼π∗h(·|sh)

[
Qk,h(sh, a)

]
− Ea∼πk

h(·|sh)
[
Qk,h(sh, a)

]}∣∣s1 = sk1

]

≤
K∑
k=1

E
[ H∑
h=1

{αH2

2
+ α−1

(
DKL

(
π∗h(·|sh)‖πkh(·|sh)

)
−DKL

(
π∗h(·|sh)‖πk+1

h (·|sh)
))}∣∣∣s1 = sk1

]

=
αKH3

2
+

K∑
k=1

α−1E
[ H∑
h=1

{
DKL

(
π∗h(·|sh)‖πkh(·|sh)

)
−DKL

(
π∗h(·|sh)‖πk+1

h (·|sh)
)}∣∣s1 = sk1

]
, (A.4)

where ah ∼ π∗h(·|sh), sh+1 ∼ Ph(·|sh, ah), the first inequality holds due to Lemma 6.1 and the second in-
equality holds due to Lemma 6.2. For Kullback–Leibler divergence DKL

(
π∗h(·|sh)‖π1

h(·|sh)
)
, we have 0 ≤

DKL

(
π∗h(·|sh)‖π1

h(·|sh)
)

and

DKL

(
π∗h(·|sh)‖π1

h(·|sh)
)

=
∑
a∈A

π∗h(a|sh) log

(
π∗h(a|sh)

π1
h(a|sh)

)
=
∑
a∈A

π∗h(a|sh) log
(
π∗h(a|sh)× |A|

)
= log |A|+

∑
a∈A

π∗h(a|sh) log
(
π∗h(a|sh)

)
≤ log |A|, (A.5)
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where the first equation holds due to π1
h(a|sh) = 1/|A| and the inequality holds on due to 0 ≤ π∗h(a|sh) ≤ 1.

Substituting (A.5) into (A.4), we have

I1 ≤
αKH3

2
+

K∑
k=1

α−1E
[ H∑
h=1

{
DKL

(
π∗h(·|sh)‖πkh(·|sh)

)
−DKL

(
π∗h(·|sh)‖πk+1

h (·|sh)
)}]

=
αKH3

2
+ α−1E

[ H∑
h=1

{
DKL

(
π∗h(·|sh)‖π1

h(·|sh)
)
−DKL

(
π∗h(·|sh)‖πK+1

h (·|sh)
)}]

≤ αKH3

2
+ α−1E

[ H∑
h=1

{
DKL

(
π∗h(·|sh)‖π1

h(·|sh)
)}]

≤ αKH3

2
+ α−1H log |A|, (A.6)

where s1 is the fixed initial state, ah ∼ π∗h(·|sh), sh+1 ∼ Ph(·|sh, ah), the first inequality holds due to (A.4) and
the second inequality holds due to Kullback–Leibler divergence is non-negative and the third inequality holds
due to (A.5). For the term I2, we have

I2 =
K∑
k=1

(
Vk,1(sk1)− V π

k

k,1 (sk1)
)

≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ) + 4H

√
T log(H/δ)

≤ 56
√
dH3T log(4K2H/δ) log(1 +K/λ) + 492

√
d2H2T log(4K2H/δ) log(1 +K/λ)

+ 1670d2H3log2(4K2H/δ) log2(1 +K/λ) + 473d2.5H2.5log2(4K2H/δ) log2(1 +KH4/λ), (A.7)

where the first inequality holds due to Lemma 6.4 and the second inequality holds due to Lemma 6.5 with the
fact that

√
a+ b+ c+ d ≤

√
a+
√
b+
√
c+
√
d. Substituting (A.6) and (A.7) into (A.5), we finish the proof of

Theorem 5.1.

A.2 Proof of Theorem 5.3

In this section, we provide the proof of the lower bounds of the regret and the lower bound is based on previous
work (Zhou et al., 2021b,a).

Proof of Theorem 5.3. To prove the lower bound, we construct a series of hard-to-learn adversarial MDPs in-
troduced by Zhou et al. (2021b,a). To be more specific, the state space S consists of states s1, .., sH+2, where
sH+1 and sH+2 are absorbing states. The action space A = {−1, 1}d−1 consists of 2d−1 different actions. The
adversarial reward function rkh satisfies that rkh(sh,a) = 0(1 ≤ h ≤ H+1) and rkh(sH+2,a) = 1. For the transition
probability function Ph, sH+1 and sH+2 are absorbing states, which will always stay at the same state, and for
other state sh(1 ≤ h ≤ H), we have

Ph(sh+1|sh,a) = 1− δ − 〈µh,a〉,
Ph(sH+2|sh,a) = δ + 〈µh,a〉,

where each µh ∈ {−∆,∆}d with ∆ =
√
δ/K/(4

√
2) and δ = 1/H. Furthermore, these hard-to-learn adversarial

MDPs can be represented as linear mixture MDPs with the following feature mapping φ : S × S ×A → Rd and
vector θh:

φ(sh+1|sh,a) =
(
α(1− δ),−βa

)
, h ∈ [H],

φ(sH+2|sh,a) =
(
αδ, βa

)
, h ∈ [H],

φ(sh+1|sh,a) =
(
α,0

)
, h ∈ [H],

φ(sh+1|sh,a) = (0,0), h ∈ [H],
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θh = (1/α,µh/β), h ∈ [H],

where 0 = 0d−1 is a (d−1)-dimensional vector of all zeros, α =
√

1/
(
1 + (d− 1)∆

)
and β =

√
∆/
(
1 + (d− 1)∆

)
.

Since B ≥ 2 and K ≥ (d − 1)2H/2, we have ‖θh‖2 =
(
1 + ∆(d − 1)

)2 ≤ B and these hard-to-learn MDPs are
B-bounded linear mixture MDPs.

Since the adversarial reward function is fixed across different episode k, the value function V πk,h is also fixed for
each policy π and the optimal policy π∗ is pick the action a∗ = µh′/∆ at state sh′(1 ≤ h′ ≤ H). Therefore,
the adversarial MDP will degenerate to non-adversarial MDP and the adversarial regret is the same as the
non-adversarial regret. For the lower bound of the non-adversarial regret, Theorem 5.6 (Zhou et al., 2021a)
shows that for any algorithm, if B ≥ 2, H ≥ 3, d ≥ 4 and K ≥ (d − 1)2H/2, then there exist a parameter
µ∗ = {µ∗1, ..,µ∗H} such that the expected regret is lower bounded by

Regret(K) = Ω(dH
√
T ).

Therefore, we finish the proof of Theorem 5.3.

B PROOF OF LEMMAS IN SECTIONS 4 AND 6

B.1 Proof of Lemma 4.1

We need the following Lemmas:

Lemma B.1 (Bernstein inequality for vector-valued martingales, Zhou et al. 2021a). Let {Ft}∞t=1 be a filtration
and (xt, ηt)t≥1 be a stochastic process so that xt ∈ Rd is Ft-measurable and ηt ∈ R is Ft+1-measurable. For
constant R,L, σ, λ > 0,µ∗ ∈ Rd, let yt = 〈xt,µ∗〉+ ηt and suppose that

|ηt| ≤ R,E[ηt|Ft] = 0,E[ηt|Ft] ≤ σ2, ‖xt‖2 ≤ L.

Then, for any 0 ≤ δ ≤ 1, with probability at least 1 − δ, we have

∀t > 0,

∥∥∥∥ t∑
i=1

xiηi

∥∥∥∥
Σ−1

t

≤ βt, ‖µt − µ∗‖Σt
≤ βt +

√
λ‖µ∗‖2,

where Σt = λI +
∑t
i=1 xx>,bt =

∑t
i=1 xiyi,µt = Σ−1t bt and

βt = 8σ
√
d log

(
1 + tL2/(dλ)

)
log(4t2/δ) + 4R log(4t2/δ).

Proof of Lemma 4.1. For each h ∈ [H], by the definition of [V̄hVk,h+1](skh, a
k
h) in (4.2) and [VhVk,h+1](skh, a

k
h) in

(3.1), we have

[V̄hVk,h+1](skh, a
k
h)− [VhVk,h+1](skh, a

k
h)

=
[〈
φV 2

k,h+1
(skh, a

k
h), θ̃k,h

〉
, H2

]
[0,H2]

−
[〈
φVk,h+1

(skh, a
k
h), θ̂k,h

〉
[0,H]

]2
−
{

[PhV 2
k,h+1](skh, a

k
h)−

(
[PhVk,h+1](skh, a

k
h)
)2}

=
[〈
φV 2

k,h+1
(skh, a

k
h), θ̃k,h

〉]
[0,H2]

− [PhV 2
k,h+1](skh, a

k
h)︸ ︷︷ ︸

I1

+
(
[PhVk,h+1](skh, a

k
h)
)2 − [〈φVk,h+1

(skh, a
k
h), θ̂k,h

〉
[0,H]

]2
︸ ︷︷ ︸

I2

. (B.1)

For the term I1, we have

|I1| =
∣∣∣∣[〈φV 2

k,h+1
(skh, a

k
h), θ̃k,h

〉]
[0,H2]

− [PhV 2
k,h+1](skh, a

k
h)

∣∣∣∣
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≤
∣∣∣〈φV 2

k,h+1
(skh, a

k
h), θ̃k,h

〉
− [PhV 2

k,h+1](skh, a
k
h)
∣∣∣

=
∣∣∣〈φV 2

k,h+1
(skh, a

k
h), θ̃k,h

〉
−
〈
φV 2

k,h+1
(skh, a

k
h),θh

〉∣∣∣
=
∣∣∣〈φV 2

k,h+1
(skh, a

k
h), θ̃k,h − θh

〉∣∣∣
≤
∥∥φV 2

k,h+1
(skh, a

k
h)
∥∥

Σ̃−1
k,h

∥∥θ̃k,h − θh∥∥Σ̃k,h
, (B.2)

where the first inequality holds due to 0 ≤ [PhV 2
k,h+1](skh, a

k
h) ≤ H2 and the second inequality holds due to

Cauchy-Schwarz inequality. For the term ‖θ̃k,h − θh
∥∥

Σ̃k,h
, we apply Lemma 4.1 with xt = φV 2

t,h+1
(sth, a

t
h), ηt =

V 2
t,h+1(sth+1)− [PhV 2

t,h+1](sth, a
t
h). For xt, ηt, we have the following property

‖xt‖2 =
∥∥φV 2

t,h+1
(sth, a

t
h)
∥∥
2
≤ max

s′
V 2
t,h+1(s′) ≤ H2,

E[ηt|Ft] = 0, |ηt| =
∣∣V 2
t,h+1(sth+1)− [PhV 2

t,h+1](sth, a
t
h)
∣∣ ≤ H2,

E[η2t |Ft] ≤ H4.

Therefore, with probability at least 1 − δ/H, for all k ∈ [K], we have∥∥θ̃k,h − θh∥∥Σ̃k,h
≤ 8H2

√
d log

(
1 + kH4/(dλ)

)
log(4k2H/δ) + 4H2 log(4k2H/δ) +

√
λB. (B.3)

Substituting (B.3) into (B.2), we have

|I1| ≤
∥∥φV 2

k,h+1
(skh, a

k
h)
∥∥

Σ̃−1
k,h

(
8H2

√
d log

(
1 + kH4/(dλ)

)
log(4k2H/δ) + 4H2 log(4k2H/δ) +

√
λB
)

= β̃k
∥∥Σ̃−1/2k,h φV 2

k,h+1
(skh, a

k
h)
∥∥
2
.

Since both two terms of I1 belong to the interval [0, H2], we have

|I1| ≤ min
{
β̃k
∥∥Σ̃−1/2k,h φV 2

k,h+1
(skh, a

k
h)
∥∥
2
, H2

}
. (B.4)

For the term I2, we have

|I2| =
∣∣∣∣([PhVk,h+1](skh, a

k
h)
)2 − [〈φVk,h+1

(skh, a
k
h), θ̂k,h

〉
[0,H]

]2∣∣∣∣
=

∣∣∣∣[〈φVk,h+1
(skh, a

k
h), θ̂k,h

〉]
[0,H]

− [PhVk,h+1](skh, a
k
h)

∣∣∣∣
×
∣∣∣∣[〈φVk,h+1

(skh, a
k
h), θ̂k,h

〉]
[0,H]

+ [PhVk,h+1](skh, a
k
h)

∣∣∣∣
≤ 2H

∣∣∣∣[〈φVk,h+1
(skh, a

k
h), θ̂k,h

〉]
[0,H]

− [PhVk,h+1](skh, a
k
h)

∣∣∣∣
≤ 2H

∣∣∣〈φVk,h+1
(skh, a

k
h), θ̂k,h

〉
−
〈
φVk,h+1

(skh, a
k
h),θh

〉∣∣∣
= 2H

∣∣∣〈φVk,h+1
(skh, a

k
h), θ̂k,h − θh

〉∣∣∣
≤ 2H

∥∥φVk,h+1
(skh, a

k
h)
∥∥

Σ̂−1
k,h

∥∥θ̂k,h − θh∥∥Σ̂k,h
, (B.5)

where the first inequality and second inequality holds due to 0 ≤ [PhVk,h+1](skh, a
k
h) ≤ H and the third in-

equality holds due to Cauchy-Schwarz inequality. For the term ‖θ̂k,h − θh
∥∥

Σ̂k,h
, we apply Lemma 4.1 with

xt = σ̄−1k,hφVt,h+1
(sth, a

t
h), ηt = σ̄−1k,hVt,h+1(sth+1)− σ̄−1k,h[PhVt,h+1](sth, a

t
h). For xt, ηt, we have following property

‖xt‖2 =
∥∥σ̄−1k,hφVt,h+1

(sth, a
t
h)
∥∥
2
≤ σ̄−1k,h max

s′
|Vt,h+1(s′)| ≤

√
d,

E[ηt|Ft] = 0, |ηt| =
∣∣σ̄−1k,hVt,h+1(sth+1)− σ̄−1k,h[PhVt,h+1](sth, a

t
h)
∣∣ ≤ √d,
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E[η2t |Ft] ≤ sup η2t ≤ d.

Therefore, with probability at least 1 − δ/H, for all k ∈ [K], we have∥∥θ̂k,h − θh∥∥Σ̂k,h
≤ 8d

√
log
(
1 + kH4/(dλ)

)
log(4k2H/δ) + 4

√
d log(4k2H/δ) +

√
λB. (B.6)

Substituting (B.6) into (B.5), we have

|I2| ≤ 2H
∥∥φV 2

k,h+1
(skh, a

k
h)
∥∥

Σ̂−1
k,h

(
8d
√

log
(
1 + kH4/(dλ)

)
log(4k2H/δ) + 4

√
d log(4k2H/δ) +

√
λB
)

= β̂k
∥∥Σ̂−1/2k,h φV 2

k,h+1
(skh, a

k
h)
∥∥
2
.

Since both two terms of I2 belong to the interval [0, H2], we have

|I2| ≤ min
{

2Hβ̄k
∥∥Σ̂−1/2k,h φV 2

k,h+1
(skh, a

k
h)
∥∥
2
, H2

}
. (B.7)

Substituting (B.4) and (B.7) into (B.1), with probability at least 1 − 2δ/H, we have∣∣[V̄hVk,h+1](skh, a
k
h)− [VhVk,h+1](skh, a

k
h)
∣∣ = |I1 + I2| ≤ |I1|+ |I2| ≤ Ek,h, (B.8)

where

Ek,h = min
{
β̃k
∥∥Σ̃−1/2k,h φV 2

k,h+1
(skh, a

k
h)
∥∥
2
, H2

}
+ min

{
2Hβ̄k

∥∥Σ̂−1/2k,h φVk,h+1
(skh, a

k
h)
∥∥
2
, H2

}
.

We apply Lemma 4.1 again with xt = σ̄−1k,hφVt,h+1
(sth, a

t
h), ηt = σ̄−1k,hVt,h+1(sth+1) − σ̄−1k,h[PhVt,h+1](sth, a

t
h). For

xt, ηt, we have following property

‖xt‖2 =
∥∥σ̄−1k,hφVt,h+1

(sth, a
t
h)
∥∥
2
≤ σ̄−1k,h max

s′
Vt,h+1(s′) ≤

√
d

E[ηt|Ft] = 0, |ηt| =
∣∣σ̄−1k,hVt,h+1(sth+1)− σ̄−1k,h[PhVt,h+1](sth, a

t
h)
∣∣ ≤ √d.

With probability at least 1 − 2δ/H, for all t ∈ [K], we have

E[η2t |Ft] = σ̄−1t,h [VhVt,h+1](sth, a
t
h),≤ σ̄−1t,h

(
[V̄hVt,h+1](sth, a

t
h) + Et,h

)
≤ 1, (B.9)

where the first inequality holds due to (B.8) and the second inequality holds due to the definition of σ̄−1t,h .
Therefore, with probability at least 1 − 3δ/H, for all k ∈ [K], we have∥∥θ̂k,h − θh∥∥Σ̂k,h

≤ 8
√
d log

(
1 + kH4/(dλ)

)
log(4k2H/δ) + 4

√
d log(4k2H/δ) +

√
λB = β̂k.

Taking union bound for all h ∈ [H], we finish the proof.

B.2 Proof of Lemma 6.1

Proof of Lemma 6.1. For each h ∈ [H] and s ∈ S, we have

V ∗k,h(s)− Vk,h(s) = Ea∼π∗h(·|s)
[
Q∗k,h(s, a)

]
− Ea∼πk

h(·|s)
[
Qk,h(s, a)

]
= Ea∼π∗h(·|s)

[
Q∗k,h(s, a)

]
− Ea∼π∗h(·|s)

[
Qk,h(s, a)

]︸ ︷︷ ︸
I

+ Ea∼π∗h(·|s)
[
Qk,h(s, a)

]
− Ea∼πk

h(·|s)
[
Qk,h(s, a)

]
. (B.10)

For the term I, we have

I = Ea∼π∗h(·|s)
[
Q∗k,h(s, a)−Qk,h(s, a)

]
≤ Ea∼π∗h(·|s)

[
[Ph(V ∗k,h+1 − Vk,h+1)

]
(s, a)

]
= Ea∼π∗h(·|s),s′∼Ph(·|s,a)

[
V ∗k,h+1(s′)− Vk,h+1(s′)

]
, (B.11)

where the inequality holds due to Lemma A.2. Recursively using (B.11) with all h ∈ [H], for all k ∈ [K], we
have

V ∗k,1(sk1)− Vk,1(sk1) ≤ E
[ H∑
h=1

{
Ea∼π∗h(·|sh)

[
Qk,h(sh, a)

]
− Ea∼πk

h(·|sh)
[
Qk,h(sh, a)

]}∣∣s1 = sk1

]
,

where ah ∼ π∗h(·|sh), sh+1 ∼ Ph(·|sh, ah). Therefore, we finish the proof.
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B.3 Proof of Lemma 6.2

Proof of Lemma 6.2. By the update rule of the policy πkh, for all k ∈ [K],h ∈ [H], s ∈ S, we have

exp
(
αQk,h(s, a)

)
=
πkh(a|s) exp

{
αQh,k(a|s)

}
πkh(a|s)

=
ρπk+1

h (a|s)
πkh(a|s)

, (B.12)

where ρ =
∑
a∈A π

k
h(a|s) exp

{
αQh,k(a|s)

}
is fixed for all action a. Thus, we have∑

a∈A
αQk,h(s, a)

(
π∗h(a|s)− πk+1

h (a|s)
)

=
∑
a∈A

(
log ρ+ log πk+1

h (a|s)− log πkh(a|s)
)(
π∗h(a|s)− πk+1

h (a|s)
)

=
∑
a∈A

π∗h(a|s)
(

log π∗h(a|s)− log πkh(a|s)
)

=
∑
a∈A

π∗h(a|s)
(

log π∗h(a|s)− log πk+1
h (a|s)

)
−
∑
a∈A

π∗h(a|s)
(

log πk+1
h (a|s)− log πkh(a|s)

)
−
∑
a∈A

πk+1
h (a|s)

(
log πk+1

h (a|s)− log πkh(a|s)
)

= DKL

(
π∗h(·|s)‖πk+1

h (·|s)
)
−DKL

(
π∗h(·|s)‖πkh(·|s)

)
−DKL

(
πk+1
h (·|s)‖πkh(·|s)

)
, (B.13)

where the first equation holds due to (B.12) and the second equation holds due to
∑
a∈A

(
π∗h(a|s)−πk+1

h (a|s)
)

= 0.
Therefore, we have

Ea∼π∗h(·|sh)
[
Qk,h(s, a)

]
− Ea∼πk

h(·|s)
[
Qk,h(s, a)

]
=
∑
a∈A

Qk,h(s, a)
(
π∗h(a|s)− πkh(a|s)

)
=
∑
a∈A

Qk,h(s, a)
(
π∗h(a|s)− πk+1

h (a|s)
)

+
∑
a∈A

Qk,h(s, a)
(
πk+1
h (a|s)− πkh(a|s)

)
≤
∑
a∈A

Qk,h(s, a)
(
π∗h(a|s)− πk+1

h (a|s)
)

+H
∥∥πk+1

h (·|s)− πkh(·|s)
∥∥
1

= α−1
(
DKL

(
π∗h(·|s)‖πk+1

h (·|s)
)
−DKL

(
π∗h(·|s)‖πkh(·|s)

)
−DKL

(
πk+1
h (·|s)‖πkh(·|s)

))
+H

∥∥πk+1
h (·|s)− πkh(·|s)

∥∥
1

≤ α−1
(
DKL

(
π∗h(·|s)‖πk+1

h (·|s)
)
−DKL

(
π∗h(·|s)‖πkh(·|s)

))
+H

∥∥πk+1
h (·|s)− πkh(·|s)

∥∥
1
−
∥∥πk+1

h (·|s)− πkh(·|s)
∥∥2
1

2α

≤ αH2

2
+ α−1

(
DKL

(
π∗h(·|sh)‖πkh(·|sh)

)
−DKL

(
π∗h(·|sh)‖πk+1

h (·|sh)
))
, (B.14)

where the first inequality holds due to the fact that 0 ≤ Qπk

k,h(s, a) ≤ Qk,h(s, a) ≤ H, the second inequality holds

due to Pinsker’s inequality and the last inequality holds due to the fact that ax − bx2 ≤ a2/4b. Therefore, we
finish the proof.

B.4 Proof of Lemma 6.3

Proof of Lemma 6.3.

Qk,h(skh, a
k
h)−Qπ

k

k,h(skh, a
k
h)

=
[
rkh(skh, a

k
h) +

〈
θ̂k,h,φVk,h+1

(skh, a
k
h)
〉

+ β̂k
∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)
∥∥
2

]
[0,H−h+1]
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− rkh(skh, a
k
h)− [PhV π

k

k,h](skh, a
k
h)

≤
∣∣∣〈θ̂k,h,φVk,h+1

(skh, a
k
h)
〉

+ β̂k
∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)
∥∥
2

∣∣∣− [PhV π
k

k,h](skh, a
k
h)

≤
[
PhVk,h+1

]
(skh, a

k
h) +

∣∣∣〈θ̂k,h − θh,φVk,h+1
(skh, a

k
h)
〉∣∣∣

+ β̂k
∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)
∥∥
2
−
[
PhV π

k

k,h+1

]
(skh, a

k
h)

≤
[
Ph(Vk,h+1 − V π

k

k,h+1)
]
(skh, a

k
h) + 2β̂k

∥∥Σ̂−1/2k,h φVk,h+1
(skh, a

k
h)
∥∥
2

=
[
Ph(Vk,h+1 − V π

k

k,h+1)
]
(skh, a

k
h) + 2β̂kσ̄k,h

∥∥Σ̂−1/2k,h φVk,h+1
(skh, a

k
h)/σ̄k,h

∥∥
2
, (B.15)

where the first inequality holds due to the fact that x[0,z] − y ≤ |x− y| when y ≥ 0, the second inequality holds
due to the fact that |x+ y + z| ≤ |x|+ |y|+ |z| and the third inequality holds due to event E . Furthermore, we
have

Qk,h(skh, a
k
h)−Qπ

k

k,h(skh, a
k
h) ≤ H −Qπ

k

k,h ≤ H ≤ 2β̂kσ̄k,h, (B.16)

where the first inequality holds due to Qk,h(skh, a
k
h) ≤ H, the second inequality holds due to Qπ

k

k,h(skh, a
k
h) ≥ 0

and the last inequality holds due to 2β̂kσ̄k,h ≥
√
dH/
√
d = H. Combined (B.15) and (B.16), we have

Qk,h(skh, a
k
h)−Qπ

k

k,h(skh, a
k
h) ≤

[
Ph(Vk,h+1 − V π

k

k,h+1)
]
(skh, a

k
h)

+ 2β̂kσ̄k,h min
{∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥
2
, 1
}
.

Therefore, we finish the proof.

B.5 Proof of Lemma 6.4

Proof of Lemma 6.4.

Vk,h(skh)− V π
k

k,h(skh)

= Ea∼πk
h(·|s

k
h)

[
Qk,h(skh, a)−Qπ

k

k,h(skh, a)
]

= Ea∼πk
h(·|s

k
h)

[
Qk,h(skh, a)−Qπ

k

k,h(skh, a)
]
−
(
Qk,h(skh, a

k
h)−Qπ

k

k,h(skh, a
k
h

)
+Qk,h(skh, a

k
h)−Qπ

k

k,h(skh, a
k
h)

≤ Ea∼πk
h(·|s

k
h)

[
Qk,h(skh, a)−Qπ

k

k,h(skh, a)
]
−
(
Qk,h(skh, a

k
h)−Qπ

k

k,h(skh, a
k
h

)
+
[
Ph(Vk,h+1 − V π

k

k,h+1)
]
(skh, a

k
h)

+ 2β̂kσ̄k,h min
{∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥
2
, 1
}

= Ea∼πk
h(·|s

k
h)

[
Qk,h(skh, a)−Qπ

k

k,h(skh, a)
]
−
(
Qk,h(skh, a

k
h)−Qπ

k

k,h(skh, a
k
h

)
+ Vk,h+1(skh+1)− V π

k

k,h+1(skh+1) +
[
Ph(Vk,h+1 − V π

k

k,h+1)
]
(skh, a

k
h)−

(
Vk,h+1(skh+1)− V π

k

k,h+1(skh+1)
)

+ 2β̂kσ̄k,h min
{∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥
2
, 1
}
, (B.17)

where the inequality holds due to Lemma 6.3. Furthermore, on the event E and E1, for all h ∈ [H], we have

K∑
k=1

(
Vk,h(skh)− V π

k

k,h(skh)
)

≤
K∑
k=1

H∑
h′=h

2β̂kσ̄k,h min
{∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥
2
, 1
}

+

K∑
k=1

H∑
h′=h

(
Ea∼πk

h(·|s
k
h)

[
Qk,h(skh, a)−Qπ

k

k,h(skh, a)
]
−
(
Qk,h(skh, a

k
h)−Qπ

k

k,h(skh, a
k
h

))
+

K∑
k=1

H∑
h′=h

([
Ph(Vk,h+1 − V π

k

k,h+1)
]
(skh, a

k
h)−

(
Vk,h+1(skh+1)− V π

k

k,h+1(skh+1)
))
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≤
K∑
k=1

H∑
h′=h

2β̂kσ̄k,h min
{∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥
2
, 1
}

+ 4H
√
T log(H/δ)

≤ 2β̂K

K∑
k=1

H∑
h′=h

σ̄k,h min
{∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥
2
, 1
}

+ 4H
√
T log(H/δ)

≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√√√√ K∑
k=1

H∑
h=1

min
{∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥
2
, 1
}

+ 4H
√
T log(H/δ)

≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ) + 4H

√
T log(H/δ), (B.18)

where the first inequality holds by taking the summation of (B.17) for k ∈ [K] and h ≤ h′ ≤ H, the second

inequality holds due to the definition of event E1, the third inequality holds due to β̂k ≤ β̂K , the fourth inequality
holds due to Cauchy-Schwarz inequality and the last inequality holds due to Lemma A.3. Furthermore, taking
the summation of (B.18), we have

K∑
k=1

H∑
h=1

[
Ph(Vk,h+1 − V π

k

k,h+1)
]
(skh, a

k
h)

=
K∑
k=1

H∑
h=1

(
Vk,h+1(skh+1)− V π

k

k,h+1(skh+1)
)

+

K∑
k=1

H∑
h=1

([
Ph(Vk,h+1 − V π

k

k,h+1)
]
(skh, a

k
h)−

(
Vk,h+1(skh+1)− V π

k

k,h+1(skh+1)
))

≤
K∑
k=1

H∑
h=1

(
Vk,h+1(skh+1)− V π

k

k,h+1(skh+1)
)

+ 2H
√

2T log(1/δ)

≤ 2Hβ̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ) + 4H2

√
T log(H/δ),

where the first inequality holds due to the definition of event E2 and the last inequality holds due (B.18).
Therefore, we finish the proof.

B.6 Proof of Lemma 6.5

Proof of Lemma 6.5. On the event E , by Lemma 4.1, for all k ∈ [K], h ∈ [H], we have

[V̄k,hVk,h+1](skh, a
k
h) + Ek,h ≥ [VhVk,h+1](skh, a

k
h) ≥ 0.

Therefore, we have

K∑
k=1

H∑
h=1

σ̄2
k,h =

K∑
k=1

H∑
h=1

max
{
H2/d, [V̄k,hVk,h+1](skh, a

k
h) + Ek,h

}
≤

K∑
k=1

H∑
h=1

H2

d
+

K∑
k=1

H∑
h=1

[V̄k,hVk,h+1](skh, a
k
h) +

K∑
k=1

H∑
h=1

Ek,h

=
H2T

d
+

K∑
k=1

H∑
h=1

(
[V̄k,hVk,h+1](skh, a

k
h)− [VhVk,h+1](skh, a

k
h)
)

︸ ︷︷ ︸
I1

+
K∑
k=1

H∑
h=1

Ek,h︸ ︷︷ ︸
I2
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+
K∑
k=1

H∑
h=1

(
[VhVk,h+1](skh, a

k
h)− [VhV π

k

k,h+1](skh, a
k
h)
)

︸ ︷︷ ︸
I3

+
K∑
k=1

H∑
h=1

[VhV π
k

k,h+1](skh, a
k
h)︸ ︷︷ ︸

I4

, (B.19)

where the inequality holds due to the fact that max{a, b} ≤ a+ b, when a, b ≥ 0. For the term I1, we have

I1 =
K∑
k=1

H∑
h=1

(
[V̄k,hVk,h+1](skh, a

k
h)− [VhVk,h+1](skh, a

k
h)
)
≤

K∑
k=1

H∑
h=1

Ek,h = I2, (B.20)

where the inequality holds due to the definition of event E . For the term I2, we have

I2 =
K∑
k=1

H∑
h=1

Ek,h

=
K∑
k=1

H∑
h=1

min
{
β̃k
∥∥Σ̃−1/2k,h φV 2

k,h+1
(skh, a

k
h)
∥∥
2
, H2

}
+

K∑
k=1

H∑
h=1

min
{

2Hβ̄k
∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)
∥∥
2
, H2

}
≤ β̃K

K∑
k=1

H∑
h=1

min
{∥∥Σ̃−1/2k,h φV 2

k,h+1
(skh, a

k
h)
∥∥
2
, 1
}

+ 2Hβ̄K

K∑
k=1

H∑
h=1

σ̄k,h min
{∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)
∥∥
2
, 1
}

≤ β̃K
√
T

√√√√ K∑
k=1

H∑
h=1

min
{∥∥Σ̃−1/2k,h φV 2

k,h+1
(skh, a

k
h)
∥∥2
2
, 1
}

+ 2
√

3H2β̄K
√
T

√√√√ K∑
k=1

H∑
h=1

min
{∥∥Σ̂−1/2k,h φVk,h+1

(skh, a
k
h)
∥∥
2
, 1
}

≤ β̃K
√
T
√

2dH log
(
1 + kH4/(dλ)

)
+ 2H2β̄K

√
3T
√

2dH log(1 +K/λ), (B.21)

where the first inequality holds on due to β̃K ≥ β̃k ≥ H2 and β̄K σ̄k,h ≥ β̄kσ̄k,h ≥ H, the second inequality
holds due to Cauchy-Schwarz inequality with the fact that σ̄k,h ≤ max{H2/d,H2 + 2H2} ≤ 3H2 and the last
inequality holds due to Lemma A.3.

On the event E ∩ E1 ∩ E2, for the term I3, we have

I3 =
K∑
k=1

H∑
h=1

(
[VhVk,h+1](skh, a

k
h)− [VhV π

k

k,h+1](skh, a
k
h)
)

=

K∑
k=1

H∑
h=1

(
[PhV 2

k,h+1](skh, a
k
h)−

(
[PhVk,h+1](skh, a

k
h)
)2 − [Ph(V π

k

k,h+1)2](skh, a
k
h) +

(
[PhV π

k

k,h+1](skh, a
k
h)
)2)

≤
K∑
k=1

H∑
h=1

(
[PhV 2

k,h+1](skh, a
k
h)− [Ph(V π

k

k,h+1)2](skh, a
k
h)
)

≤ 2H
K∑
k=1

H∑
h=1

(
[PhVk,h+1](skh, a

k
h)− [PhV π

k

k,h+1](skh, a
k
h)
)

≤ 4H2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ) + 8H3

√
T log(H/δ), (B.22)

where the first inequality holds due to the fact that V π
k

k,h+1(s′) ≤ Vk,h+1(s′), the second inequality holds due to

0 ≤ Vk,h+1(s′), V π
k

k,h+1(s′) ≤ H and the last inequality holds due to Lemma 6.4.
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On the event E3, for the term I4, we have

I4 =
K∑
k=1

H∑
h=1

[VhV π
k

k,h+1](skh, a
k
h) ≤ 3

(
HT +H3 log(1/δ)

)
. (B.23)

Substituting (B.20), (B.21), (B.22) and (B.23) into (B.19), we have

K∑
k=1

H∑
h=1

σ̄−2k,h ≤ H
2T/d+ 3

(
HT +H3 log(1/δ)

)
+ 2β̃K

√
T
√

2dH log
(
1 +KH4/(dλ)

)
+ 4H2β̄K

√
3T
√

2dH log(1 +K/λ)

+ 4H2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ) + 8H3

√
T log(H/δ),

where

β̄K = 8d
√

log(1 +K/λ) log(4K2H/δ) + 4
√
d log(4K2H/δ) +

√
λB,

β̂K = 8
√
d log(1 +K/λ) log(4K2H/δ) + 4

√
d log(4K2H/δ) +

√
λB,

β̃K = 8H2
√
d log

(
1 +KH4/(dλ)

)
log(4K2H/δ) + 4H2 log(4K2H/δ) +

√
λB.

Therefore, by the fact that x ≤ a
√
x+ b implies x ≤ a2 + 2b, we have

K∑
k=1

H∑
h=1

σ̄−2k,h ≤ 2H2T/d+ 6
(
HT +H3 log(1/δ)

)
+ 4β̃K

√
T
√

2dH log
(
1 +KH4/(dλ)

)
+ 8H2β̄K

√
3T
√

2dH log(1 +K/λ)

+ 32H5d(β̂K)2 log(1 +K/λ) + 16H3
√
T log(H/δ)

≤ 2H2T/d+ 6
(
HT +H3 log(1/δ)

)
+ 330

√
d3H5T log(4K2H/δ) log(1 +KH4/λ)

+ 2048H5d2 log2(4K2H/δ) log2(1 +K/λ) + 16H3
√
T log(H/δ)

≤ 2HT/d+ 179HT + 165d3H4 log2(4K2H/δ) log2(1 +KH4/λ)

+ 2062H5d2 log2(4K2H/δ) log2(1 +K/λ),

where the second inequality holds due to the definition of parameter β̄K , β̂K , β̃K with the fact that λ = 1/B2 ≤ 1
and the third inequality holds due to Young’s inequality. Therefore, we finish the proof.
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